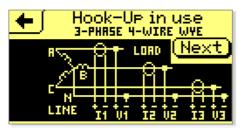


Hook-up Checklist for the Ranger PM3000 (Asia)

- Step 1. Establish type of installation (e.g. no. of phases).
- Step 2. Establish type of transducers (PTs, CTs etc.).
- Step 3. Choose one of the ten following hook-up options:
 - 1) 3-Phase 4-Wire Wye
 - 2) 3-Phase 4-Wire Delta
 - 3) 3-Phase 3-Wire 3P-P (3 element for all phase-phase)
 - 4) 3-Phase 3-Wire Delta
 - 5) 3-Phase 3-Wire Wye
 - 6) 3-Phase 2.5-Element Wye
 - 7) 3-Phase 1-Element Wye
 - 8) 2-Phase 2-Elemen Wye
 - 9) Single Phase
 - 10) Uncommitted.

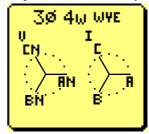
Those in **bold** are used most frequently.


- Step 4. Configure instrument for relevant hook-up and transducers.
- Step 5. Verify physical connections using instrument touchscreen or PMScreen vector outputs (see pp. 1-10 of these notes).
- Step 6. If required, refer to Phase Angle Summary (p. 11).
- Step 7. If vectors do not match what is expected or you see the "Suspect Hook-Up" message, refer to possible explanations and action to be taken (p. 12).

3-Phase 4-Wire Wye

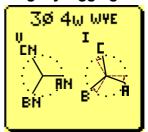
Hook-up as displayed on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

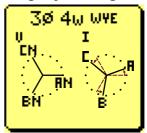

Connections are made using:

- 3 Rogowski Coils or clamp on CTs,
- 4 Voltage Leads

with the common Neutral connected via 2 link leads (blue or white).


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

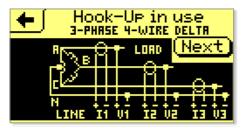
Unity Power Factor (PF)



Screenshot from touchscreen or PMScreen

Slightly lagging PF

Slightly leading PF

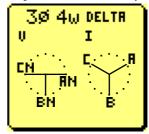


Something not looking right? See p. 12 for possible solutions.

3-Phase 4-Wire Delta

Hook-up as displayed on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

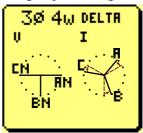

Connections are made using:

- 3 Rogowski Coils or clamp on CTs,
- 4 Voltage Leads

with the common Neutral connected via 2 link leads (blue or white).

A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

Unity Power Factor (PF)

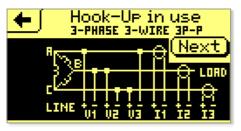


Screenshot from touchscreen or PMScreen

Slightly lagging PF

Slightly leading PF

Something not looking right?


See p. 12 for possible solutions.

3-Phase 3-Wire 3P-P

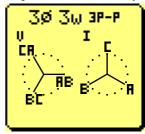
(3 element for all phase-phase)

Hook-up as displayed on the PM3000 touchscreen or PMScreen.

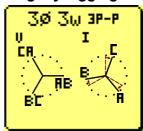
Screenshot from touchscreen or PMScreen

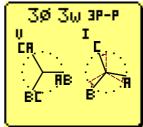
Connections are made using:

- 3 Rogowski Coils or clamp on CTs,
- 3 Voltage Leads


with 3 link leads (blue or white) connecting the return though each of the 3 phases.

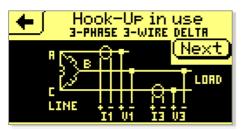
Something not looking right? See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.


Unity Power Factor (PF)

Screenshot from touchscreen or PMScreen

Slightly lagging PF



3-Phase 3-Wire Delta

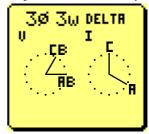
Hook-up as displayed on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

Connections are made using:

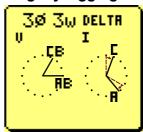
- 2 Rogowski Coils or clamp on CTs,
- 3 Voltage Leads

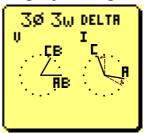
with the return along the B phase connected via 1 link lead (blue or white).



Something not looking right?

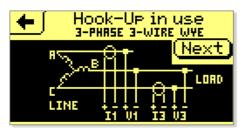
See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.


Unity Power Factor (PF)

Screenshot from touchscreen or PMScreen

Slightly lagging PF



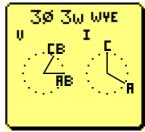
3-Phase 3-Wire Wye

Hook-up as displayed on the PM3000 touchscreen or PMScreen.

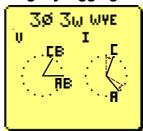
Screenshot from touchscreen or PMScreen

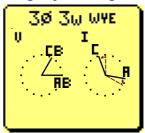
Connections are made using:

- 2 Rogowski Coils or clamp on CTs,
- 3 Voltage Leads


with the return along the B phase connected via 1 link lead (blue or white).

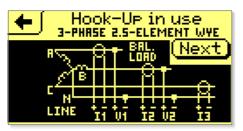
Something not looking right? See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.


Unity Power Factor (PF)

Screenshot from touchscreen or PMScreen

Slightly lagging PF



3-Phase 2.5-Element Wye

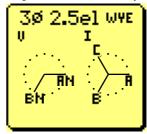
Hook-up as displayed on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

Connections are made using:

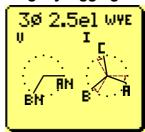
- 3 Rogowski Coils or clamp on CTs,
- 3 Voltage Leads

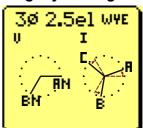
with the common Neutral connected via 1 link lead (blue or white).



Something not looking right?

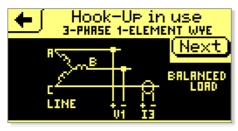
See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.


Unity Power Factor (PF)

Screenshot from touchscreen or PMScreen

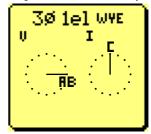
Slightly lagging PF



3-Phase 1-Element Wye

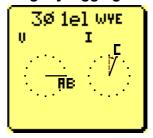
Hook-up as displayed on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

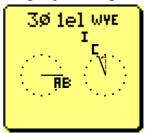

Connections are made using:

- 1 Rogowski Coil or clamp on CT,
- 2 Voltage Leads

with the return along the B phase


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

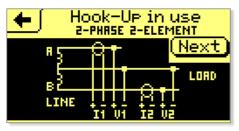
Unity Power Factor (PF)



Screenshot from touchscreen or PMScreen

Slightly lagging PF

Slightly leading PF

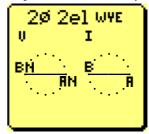

Something not looking right?

See p. 12 for possible solutions.

2-Phase 2-Element Wye

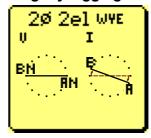
Hook-up as displayed on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

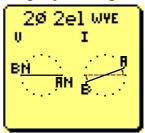

Connections are made using:

- 2 Rogowski Coils or clamp on CTs,
- 3 Voltage Leads

with the common Neutral connected via 1 link lead (blue or white).


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

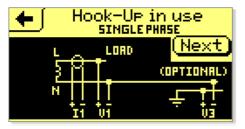
Unity Power Factor (PF)



Screenshot from touchscreen or PMScreen

Slightly lagging PF

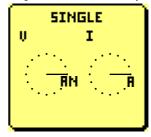
Slightly leading PF


Something not looking right?

See p. 12 for possible solutions.

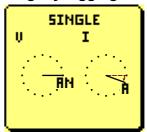
Single Phase

Hook-up as displayed on the PM3000 touchscreen or PMScreen.

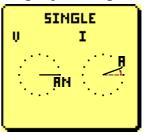

Screenshot from touchscreen or PMScreen

Connections are made using:

- 1 Rogowski Coil or clamp on CT,
- 2 Voltage Leads.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

Unity Power Factor (PF)



Screenshot from touchscreen or PMScreen

Slightly lagging PF

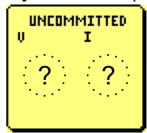
Slightly leading PF

Something not looking right? See p. 12 for possible solutions.

Hook-up 10/10

Uncommitted

Hook-up as displayed on the PM3000 touchscreen or PMScreen.



Screenshot from touchscreen or PMScreen

You can use whichever connections are required.

A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

Unity Power Factor (PF)

Screenshot from touchscreen or PMScreen

V1 Line V1 Return | 10 - 0.5 VRMS ~ V2 Line V2 Return | 10 - 0.5 VRMS ~ V2 0 - 480 VRMS ~ V3 0 - 480

Slightly lagging PF

Ranger PM3000

Phase Angle Summary

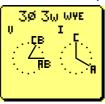
Expected phase angles are with respect to the reference vector of ChV1

Hook-Up Description		V1	V2	V3	11	12	13
1	3-Phase 4-Wire Wye	0°	240°	120°	0°	240°	120°
2	3-Phase 4-Wire Delta	0°	-90°	180°	30°	-90°	150°
3	Full 3-Phase 3-Wire 3P-P	0°	240°	120°	-30°	210°	90°
4	3-Phase 3-Wire Delta	0°		60°	-30°		90°
5	3-Phase 3-Wire Wye	0°		60°	-30°		90°
6	3-Phase 2.5-Element Wye	0°	240°		0°	240°	120°
7	3-Phase 1-Element Wye	0°					90°
8	2-Phase 2-Element Wye	0°	180°		0°	180°	
9	Single Phase	0°			0°		
10	Uncommitted	?	?	?	?	?	?

If "Suspect Hook-Up" shows, click on the PMScreen vector diagram where it will show the hook-up that the instrument is anticipating. Click on Next for specific information and advice.

Ranger PM3000

Example Errors & Possible Explanations: Vectors

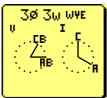

Examples made using a 3-Phase 3-Wire Wye Circuit

EXPECTED

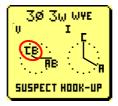

WHAT YOU SEE

EXPLANATION & SOLUTION

Unity Power Factor (PF)

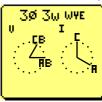


Unity Power Factor (PF)

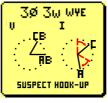


The CTs are on the wrong phases.
Swap the CTs around to align voltage and current Phasing.

Unity Power Factor (PF)

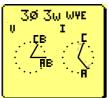


Unity Power Factor (PF)

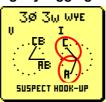


The CB voltage phase has a bad connection. Try reconnecting.

Unity Power Factor (PF)



Severely Lagging PF



Power Factor is severely lagging (beyond 45°). "Suspect Hook-Up" message displayed. THIS MAY BE CORRECT so no solution needed.

Slightly lagging PF

Slightly lagging PF

Power Factor is lagging and both CTs are reversed. Turn round the CTs to face them in the correct direction.

For further information and advice in PMScreen click on the vector diagram (which brings up the hook-up the instrument has been set up for) and then on Next.