

Hook-up Checklist for the Ranger PM3000 (EU)

Step 1. Establish type of installation (e.g. no. of phases).

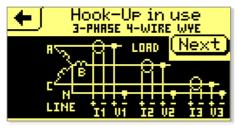
Step 2. Establish type of transducers (PTs, CTs etc.).

Step 3. Choose one of the ten following hook-up options:

- 1) 3-Phase 4-Wire Wye
- 2) 3-Phase 4-Wire Delta
- 3) 3-Phase 3-Wire 3P-P (3 element for all phase-phase)
- 4) 3-Phase 3-Wire Delta
- 5) 3-Phase 3-Wire Wye
- 6) 3-Phase 2.5-Element Wye
- 7) 3-Phase 1-Element Wye
- 8) 2-Phase 2-Elemen Wye
- 9) Single Phase
- 10) Uncommitted.

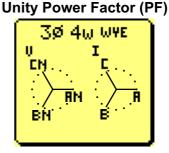
Those in **bold** are used most frequently.

Step 4. Configure instrument for relevant hook-up and transducers.

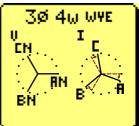

- Step 5. Verify physical connections using instrument touchscreen or PMScreen vector outputs (see pp. 1-10 of these notes).
- Step 6. If required, refer to Phase Angle Summary (p. 11).
- Step 7. If vectors do not match what is expected or you see the "Suspect Hook-Up" message, refer to possible explanations and action to be taken (p. 12).

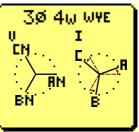
3-Phase 4-Wire Wye

Hook-up as displayed on the PM3000 touchscreen or PMScreen.


Screenshot from touchscreen or PMScreen

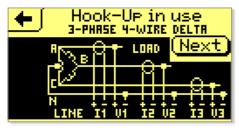
Connections are made using: 3 Rogowski Coils or clamp on CTs, 4 Voltage Leads with the common Neutral connected via 2 link leads (blue or white).


Something not looking right? See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

Slightly lagging PF



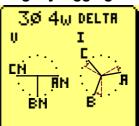
3-Phase 4-Wire Delta

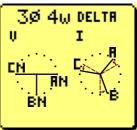
Hook-up as displayed on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

Connections are made using: 3 Rogowski Coils or clamp on CTs, 4 Voltage Leads

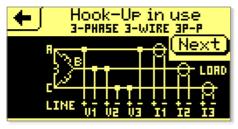
with the common Neutral connected via 2 link leads (blue or white).


Something not looking right? See p. 12 for possible solutions. A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.


Unity Power Factor (PF)

Screenshot from touchscreen or PMScreen

Slightly lagging PF


Hook-up 3/10

3-Phase 3-Wire 3P-P

(3 element for all phase-phase)

Hook-up as displayed on the PM3000 touchscreen or PMScreen.

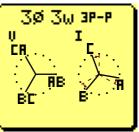
Screenshot from touchscreen or PMScreen

Connections are made using:

- 3 Rogowski Coils or clamp on CTs,
- 3 Voltage Leads

with 3 link leads (blue or white) connecting the return though each of the 3 phases.

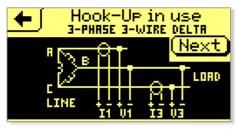
Something not looking right? See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

Unity Power Factor (PF)

Screenshot from touchscreen or PMScreen

Slightly lagging PF

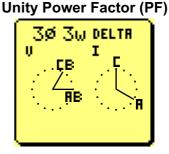


3-Phase 3-Wire Delta

Hook-up as displayed on the PM3000 touchscreen or PMScreen.

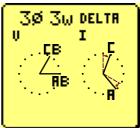
Screenshot from touchscreen or PMScreen

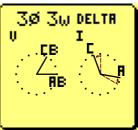
Connections are made using:


2 Rogowski Coils or clamp on CTs,

3 Voltage Leads

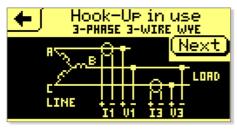
with the return along the B phase connected via 1 link lead (blue or white).




Something not looking right? See p. 12 for possible solutions. A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

Slightly lagging PF



3-Phase 3-Wire Wye

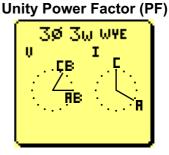
Hook-up as displayed on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

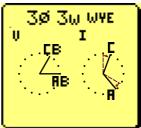
Connections are made using:

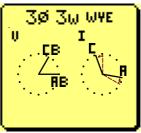
2 Rogowski Coils or clamp on CTs,

3 Voltage Leads


with the return along the B phase

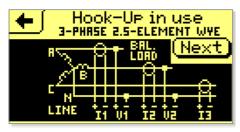
connected via 1 link lead (blue or white).


Something not looking right? See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

Slightly lagging PF



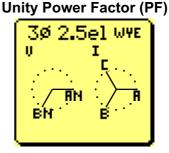
3-Phase 2.5-Element Wye

Hook-up as displayed on the PM3000 touchscreen or PMScreen.

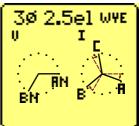
Screenshot from touchscreen or PMScreen

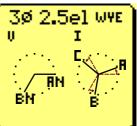
Connections are made using: 3 Rogowski Coils or clamp on CTs,

3 Voltage Leads


with the common Neutral connected

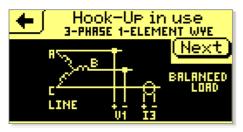
via 1 link lead (blue or white).


Something not looking right? See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

Slightly lagging PF

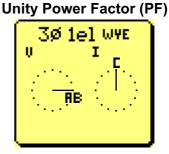


3-Phase 1-Element Wye

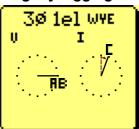
Hook-up as displayed on the PM3000 touchscreen or PMScreen.

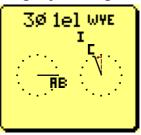
Screenshot from touchscreen or PMScreen

Connections are made using:


- 1 Rogowski Coil or clamp on CT,
- 2 Voltage Leads

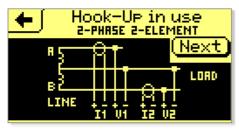
with the return along the B phase


Something not looking right? See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

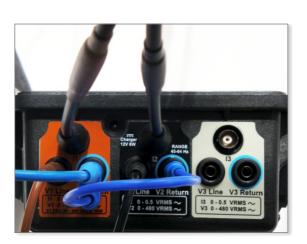
Screenshot from touchscreen or PMScreen

Slightly lagging PF



2-Phase 2-Element Wye

Hook-up as displayed on the PM3000 touchscreen or PMScreen.



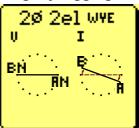
Screenshot from touchscreen or PMScreen

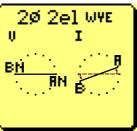
Connections are made using:

- 2 Rogowski Coils or clamp on CTs,
 - 3 Voltage Leads

with the common Neutral connected via 1 link lead (blue or white).

Something not looking right?

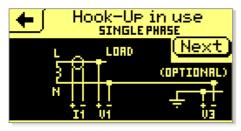

See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

Unity Power Factor (PF)

Screenshot from touchscreen or PMScreen

Slightly lagging PF

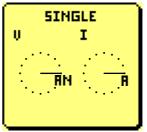


Single Phase

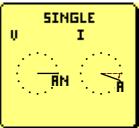
Hook-up as displayed on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

Connections are made using:


- 1 Rogowski Coil or clamp on CT,
- 2 Voltage Leads.

Something not looking right? See p. 12 for possible solutions.


A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.


Unity Power Factor (PF)

Screenshot from touchscreen or PMScreen

Slightly lagging PF

Hook-up 10/10

Uncommitted

Hook-up as displayed on the PM3000 touchscreen or PMScreen.

Screenshot from touchscreen or PMScreen

You can use whichever connections are required.

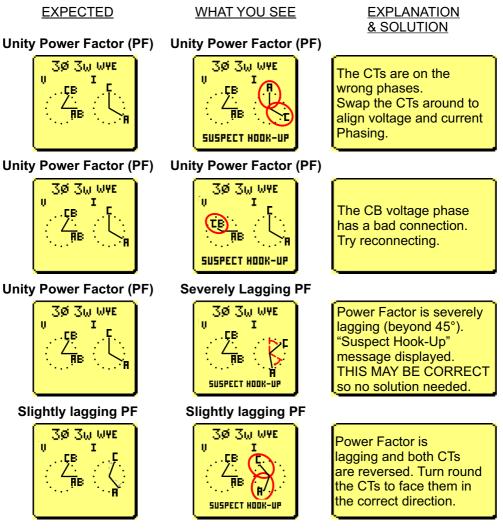
A successful hook-up (based on physical connections and corresponding instrument configuration) is demonstrated via vector outputs as seen on the PM3000 touchscreen or PMScreen.

Unity Power Factor (PF)

Slightly lagging PF

Phase Angle Summary

Expected phase angles are with respect to the reference vector of ChV1


Hook-Up Description		V1	V2	V3	11	12	13
1	3-Phase 4-Wire Wye	0°	240°	120°	0°	240°	120°
2	3-Phase 4-Wire Delta	0°	-90°	180°	30°	-90°	150°
3	Full 3-Phase 3-Wire 3P-P	0°	240°	120°	-30°	210°	90°
4	3-Phase 3-Wire Delta	0°		60°	-30°		90°
5	3-Phase 3-Wire Wye	0°		60°	-30°		90°
6	3-Phase 2.5-Element Wye	0°	240°		0°	240°	120°
7	3-Phase 1-Element Wye	0°					90°
8	2-Phase 2-Element Wye	0°	180°		0°	180°	
9	Single Phase	0°			0°		
10	Uncommitted	?	?	?	?	?	?

If "Suspect Hook-Up" shows, click on the PMScreen vector diagram where it will show the hook-up that the instrument is anticipating. Click on Next for specific information and advice.

Example Errors & Possible Explanations: Vectors

Examples made using a 3-Phase 3-Wire Wye Circuit

For further information and advice in PMScreen click on the vector diagram (which brings up the hook-up the instrument has been set up for) and then on Next.